571 research outputs found

    The Complete Solution of 2D Superfield Supergravity from graded Poisson-Sigma Models and the Super Pointparticle

    Full text link
    Recently an alternative description of 2d supergravities in terms of graded Poisson-Sigma models (gPSM) has been given. As pointed out previously by the present authors a certain subset of gPSMs can be interpreted as "genuine" supergravity, fulfilling the well-known limits of supergravity, albeit deformed by the dilaton field. In our present paper we show that precisely that class of gPSMs corresponds one-to-one to the known dilaton supergravity superfield theories presented a long time ago by Park and Strominger. Therefore, the unique advantages of the gPSM approach can be exploited for the latter: We are able to provide the first complete classical solution for any such theory. On the other hand, the straightforward superfield formulation of the point particle in a supergravity background can be translated back into the gPSM frame, where "supergeodesics" can be discussed in terms of a minimal set of supergravity field degrees of freedom. Further possible applications like the (almost) trivial quantization are mentioned.Comment: 48 pages, 1 figure. v3: after final version, typos correcte

    Graded Poisson-Sigma Models and Dilaton-Deformed 2D Supergravity Algebra

    Get PDF
    Fermionic extensions of generic 2d gravity theories obtained from the graded Poisson-Sigma model (gPSM) approach show a large degree of ambiguity. In addition, obstructions may reduce the allowed range of fields as given by the bosonic theory, or even prohibit any extension in certain cases. In our present work we relate the finite W-algebras inherent in the gPSM algebra of constraints to algebras which can be interpreted as supergravities in the usual sense (Neuveu-Schwarz or Ramond algebras resp.), deformed by the presence of the dilaton field. With very straightforward and natural assumptions on them --like demanding rigid supersymmetry in a certain flat limit, or linking the anti-commutator of certain fermionic charges to the Hamiltonian constraint-- in the ``genuine'' supergravity obtained in this way the ambiguities disappear, as well as the obstructions referred to above. Thus all especially interesting bosonic models (spherically reduced gravity, the Jackiw-Teitelboim model etc.)\ under these conditions possess a unique fermionic extension and are free from new singularities. The superspace supergravity model of Howe is found as a special case of this supergravity action. For this class of models the relation between bosonic potential and prepotential does not introduce obstructions as well.Comment: 22 pages, LaTeX, JHEP class. v3: Final version, to appear in JHE

    Controlling laser spectra in a phaseonium photonic crystal using maser

    Full text link
    We study the control of quantum resonances in photonic crystals with electromagnetically induced transparency driven by microwave field. In addition to the control laser, the intensity and phase of the maser can alter the transmission and reflection spectra in interesting ways, producing hyperfine resonances through the combined effects of multiple scattering in the superstructure.Comment: 7 pages, 4 figure

    Temperature Variation of Ultra Slow Light in a Cold Gas

    Get PDF
    A model is developed to explain the temperature dependence of the group velocity as observed in the experiments of Hau et al (Nature {\bf397}, 594 (1999)). The group velocity is quite sensitive to the change in the spatial density. The inhomogeneity in the density and its temperature dependence are primarily responsible for the observed behavior.Comment: 12 pages, 4 figure

    Quantum non-demolition (QND) modulation of quantum interference

    Get PDF
    We propose an experiment where quantum interference between two different paths is modulated by means of a QND measurement on one or both the arm of the interferometer. The QND measurement is achieved in a Kerr cell. We illustrate a scheme for the realisation of this experiment and some further developments.Comment: accepted for publicatio

    Prolactin

    Get PDF
    During an oral glucose tolerance test (OGTT) glucose and insulin levels were measured in 26 patients with prolactin-producing pituitary tumours without growth hormone excess. Basal glucose and insulin levels did not differ from the values of an age-matched control group. After glucose load the hyperprolactinaemic patients showed a decrease in glucose tolerance and a hyperinsulinaemia. Bromocriptine (CB 154), which suppressed PRL, improved glucose tolerance and decreased insulin towards normal in a second OGTT. — Human PRL or CB 154 had no significant influence on insulin release due to glucose in the perfused rat pancreas. — These findings suggest a diabetogenic effect of PRL. CB 154 might be a useful drug in improving glucose utilization in hormone-active pituitary tumours

    Photon-photon correlations and entanglement in doped photonic crystals

    Full text link
    We consider a photonic crystal (PC) doped with four-level atoms whose intermediate transition is coupled near-resonantly with a photonic band-gap edge. We show that two photons, each coupled to a different atomic transition in such atoms, can manifest strong phase or amplitude correlations: One photon can induce a large phase shift on the other photon or trigger its absorption and thus operate as an ultrasensitive nonlinear photon-switch. These features allow the creation of entangled two-photon states and have unique advantages over previously considered media: (i) no control lasers are needed; (ii) the system parameters can be chosen to cause full two-photon entanglement via absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference

    Infrared generation in low-dimensional semiconductor heterostructures via quantum coherence

    Get PDF
    A new scheme for infrared generation without population inversion between subbands in quantum-well and quantum-dot lasers is presented and documented by detailed calculations. The scheme is based on the simultaneous generation at three frequencies: optical lasing at the two interband transitions which take place simultaneously, in the same active region, and serve as the coherent drive for the IR field. This mechanism for frequency down-conversion does not rely upon any ad hoc assumptions of long-lived coherences in the semiconductor active medium. And it should work efficiently at room temperature with injection current pumping. For optimized waveguide and cavity parameters, the intrinsic efficiency of the down-conversion process can reach the limiting quantum value corresponding to one infrared photon per one optical photon. Due to the parametric nature of IR generation, the proposed inversionless scheme is especially promising for long-wavelength (far- infrared) operation.Comment: 4 pages, 1 Postscript figure, Revtex style. Replacement corrects a printing error in the authors fiel

    Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity

    Get PDF
    Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+. Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses

    The Stern-Gerlach Experiment Revisited

    Full text link
    The Stern-Gerlach-Experiment (SGE) of 1922 is a seminal benchmark experiment of quantum physics providing evidence for several fundamental properties of quantum systems. Based on today's knowledge we illustrate the different benchmark results of the SGE for the development of modern quantum physics and chemistry. The SGE provided the first direct experimental evidence for angular momentum quantization in the quantum world and thus also for the existence of directional quantization of all angular momenta in the process of measurement. It measured for the first time a ground state property of an atom, it produced for the first time a `spin-polarized' atomic beam, it almost revealed the electron spin. The SGE was the first fully successful molecular beam experiment with high momentum-resolution by beam measurements in vacuum. This technique provided a new kinematic microscope with which inner atomic or nuclear properties could be investigated. The original SGE is described together with early attempts by Einstein, Ehrenfest, Heisenberg, and others to understand directional quantization in the SGE. Heisenberg's and Einstein's proposals of an improved multi-stage SGE are presented. The first realization of these proposals by Stern, Phipps, Frisch and Segr\`e is described. The set-up suggested by Einstein can be considered an anticipation of a Rabi-apparatus. Recent theoretical work is mentioned in which the directional quantization process and possible interference effects of the two different spin states are investigated. In full agreement with the results of the new quantum theory directional quantization appears as a general and universal feature of quantum measurements. One experimental example for such directional quantization in scattering processes is shown. Last not least, the early history of the `almost' discovery of the electron spin in the SGE is revisited.Comment: 50pp, 17 fig
    • …
    corecore